

Characterizing DNS Client Behavior Using Hierarchical Aggregate Entropy

2010/2/1 Keisuke Ishibashi, NTT Information Platform Labs Masaharu Sato, NTT Communications

© 2009 NTT Information Sharing Platform Laboratories

Motivation

 Bogus queries are consuming resources of both DNS authoritative servers and caching servers

Туре	Count	Percent			
Unused Query Class	36,313	.024			
A for A	10,739,857	7.03			
Unknown TLD	19,165,840	12.5			
Nonprintable in query	2,962,471	1.94			
RFC1918 PTR	2,452,806	1.61			
Identical Query	38,838,688	25.4			
Repeated Query	68,610,091	44.9			
Referral Not Cached	6,653,690	4.36			
Legitimate	3,284,569	2.15			
TABLE II					

QUERY CLASSIFICATION RESULTS (24-HOUR PERIOD ON 4 October 2002 at the F-root DNS server).

To root servers[wessels]

To caching servers[toyono]

Legitimate

15.0%

Repeat

68.8%

[Wessels] D. Wessels et.al., "Wow, That's a Lot of Packets, " PAM 2003. [Toyono] T. Toyono et. al., "An analysis of the queries from the view point of caching servers," 2007 DNS-Operations Workshop.

NxQtype _0.1%

> N×TLD _1.9%

RFC1918

0.9%

ignoreTTL. 11.7%

RepeatMX

0.1%

RepeatNxD

1.4%

Motivation cont'd

- Most of bogus queries are sent by small number of heavy clients [wessels][toyono]
 - Filtering queries sent by those heavy clients is efficient to protect DNS server resources

						(Percentage of
type rate	100qps	200qps	300qps	400qps	500qps	total queries)
Legitimate	0.09%	0.01%	0%	0%	0%	
NxQtype	0%	0%	0%	0%	0%	
NxTLD	0%	0 %	0 %	0%	0%	
RFC1918	0.80%	0%	0%	0%	0%	
ignoreTTL	1.63%	0.05%	0.01%	0%	0%	
RepeatMX	0.01%	0 %	0%	0%	0%	
 RepeatNxD	0.64%	0 %	0%	0%	0%	
Repeat	59.69%	59.69%	59.69%	59.69%	59.69%	

Motivation cont'd

- However, not all heavy clients send only bogus queries!
 - PTR queries from web servers (analog)
 - Aggregated queries from DNS proxies
 - Prefetch queries
- Needs to classify heavy clients into normal (legitimate) clients and abnormal (bogus) clients
- Classify heavy clients by their query patterns
- How to characterize the query patterns?

						(Percentage of
type rate	100qps	200qps	300qps	400qps	500qps	total queries)
Legitimate	0.09%	0.01%	0%	0%	0%	
NxQtype	0%	0%	0%	0%	0%	
NxTLD	0%	0%	0%	0%	0%	
RFC1918	0.80%	0%	0 %	0%	0%	
ignoreTTL	1.63%	0.05%	0.01%	0%	0%	
RepeatMX	0.01%	0 %	0%	0%	0%	
RepeatNxD	0.64%	0 %	0 %	0%	0%	
Repeat	59.69%	59.69%	59.69%	59.69%	59.69%	

1

Entropy based characterization

• Use of entropy of queries

- Entropy of legitimate queries: expected to lie between them
- Calculate query entropies for heavy clients, and classify them using their entropies

Kazuya Takemori, et. al.," Entropy Study on A Resource Record DNS Query Traffic from the Campus Network," IEICE Tech. Rep. IA2008-84, Mar. 2008.

О итт Drawback of entropy based characterization

- Entropy does not tell information on spatial characteristics
 - Independent on where queries concentrate or diverse in domain name spaces
 - -Only depends on how queries concentrate or disperse

Hierarchical Aggregate Entropy

- Hierarchical Aggregate Entropy
 - Aggregating queries accordance to its hierarchical structure and calculate entropy for each hierarchy
 - Decrease of query entropy with aggregation tells spatial characteristics (how they concentrate in the same domains)

Hierarchical Aggregate Entropy (Cont'd)

- H(D⁽⁰⁾) : Entropies of non-aggregate (FQDN) queries sent by a clients
- $H(D^{(0)})$ can be represented as the sum of following terms:
 - H(D⁽²⁾): Entropies of queries aggregated into TLD level
 - $H(D^{(1)}|D^{(2)}))$: Conditional SLD entropies of queries aggregated into TLD
 - $H(D^{(0)}|D^{(1)}))$: Conditional FQDN entropies of queries aggregated into SLD

Experimental results

- Calculate hierarchical aggregate entropies of top 10,000 heavy clients for DNS traffic monitored at DNS caching servers
- Entropies from normal clients concentrated in a specific region

⇒Clients whose entropies are out of the region can be

Experimental results

- Why entropies from normal clients concentrated in a specific region?
- Investigation of top10 normal clients
 - Query distribution among TLDs: almost same Zipfian distribution
 - # of SLD in TLDs vs # of queries for the TLDs: almost linear
 →Large TLD attracts large number of queries (gravity model)

•: SLD (e.g. example.com)

Experimental results

- Classifying clients that sent queries more than 1 qps by their hierarchical aggregate entropies
- Comparing to eyeballing classification (legitimate, mail sender, repeater, scanner, log analyzer)
- ⇒ 80% accuracy
- Use of TLD level entropy or FQDN entropy
- \Rightarrow 50-70% accuracy

Type	# of	$H^{(2)}, H^{(1 2)},$	$H^{(2)}$	$H^{(0)}$
	clients	$H^{(0 2)}$ (%)	(%)	(%)
Legitimate	114	81.6	86.8	49.1
Mail sender	50	84.0	88.0	78.0
Repeater	186	1.1	24.2	12.9
Scanner	8	12.5	14.3	85.7
Log analyzer	46	2.1	10.9	87.0

PTR queries

- Hierarchical aggregation in TLD, SLD level cannot capture dispersion of PTR queries
 - 1.0.168.192.in-addr.arpa -> TLD: apra, SLD: in-addr.arpa
 - Cannot distinguish between log-analyzer and scanner
- Apply hierarchical aggregation for IP address part!
 - Entropies of dispersion in first octet, first+second octet...
 - Shows concentration to a specific region that reflects distribution of source IP addresses in IPv4 address spaces

Conclusion

- Propose the use of hierarchical aggregate entropies to classify DNS heavy clients
- Can capture spatial dispersion of queries among domain name spaces
- Entropies from normal clients concentrated in a specific region
- Experimental results show that the proposed method achieve 10-20 % improvement in classification accuracy